🐍
My Docs
PYTHONNOTES
PYTHONNOTES
  • Home
  • Downloads & Misc-Assets
  • README
  • Navigation
  • Curriculum
    • Outline
      • General Content
      • Python-Data-Structures-Unit
    • wk17
      • Outline-w17
      • homework
      • D1-Module 01 - Python I
        • Configuring Ubuntu for Python Web Development
        • Install Python
      • D2- Module 02 - Python II
      • D3- Module 03 - Python III
      • D4-Module 04 - Python IV
    • wk18
      • Outline-W-18
      • D1- Module 01 - Number Bases and Character Encoding
      • D2- Module 02 - Hash Tables I
        • Hash Table / Hash Map In Python:
        • Hash Table Use Cases
        • Practice
      • D3-Module 03 - Hash Tables II
      • D4- Module 04 - Searching and Recursion
    • wk19
      • Outline-W-19
      • D1- Module 01 - Linked Lists
        • Homework
          • Helpful Resource
      • D2- Module 02 - Queues and Stacks
      • D3- Module 03 - Binary Search Trees
        • BST Definition:
      • D4- Module 04 - Tree Traversal
        • Tree Traversals (Inorder, Preorder and Postorder)
    • wk20
      • Outline-W-20
      • D1-Graphs I
      • D2-Graphs 2
      • DFS
      • D4
  • Utilities
    • Utilites
      • Python Libraries
      • YouTube
      • Code Lab Notebook Embeds From Lecture
    • Code lab Notebooks
    • Repl.IT
      • Trinket
  • Abstract Data Structures
    • Algorithms
      • Algo-Resources
        • List-Of-Solutions-To-Common-Interview-Questions
      • Dijkstra's algorithm
      • Calculate a Factorial With Python - Iterative and Recursive
      • DFS
      • BFS
        • BFS Examples
      • Palendrome
    • Data Structures Overview
      • General Data Structures Notes
        • DS-Explained-Simple
      • Untitled
      • Algorithms
      • Dictionary
    • Abstract Data Structures:
      • Array
        • Extra-Array
        • Array Practice
      • Binary Search
      • Binary Tree
        • Binary Tree Explained
        • Find the maximum path sum between two leaves of a binary tree
      • Binary Search Tree
        • BST Explained
        • BST Insert
        • BST-Largest-Sub-Tree
      • Exotic
        • Tire
        • Dynamic Programming
      • Graphs
        • Overflow Practice Problems
        • Graphs Explained
        • Earliest Ancestor
        • _Mini Graph-Projects
          • # Social Graph
          • number of 1 islands
          • Searching and Generating Graphs
        • Graph FAQ
          • Graph DFS
        • Connected Components
        • Randomness
        • Graph BFS
        • Topological Sort
      • Hash Table
        • Hashmap or Hash tables
        • Hash Table and HashMap in Python
      • Heap
        • Heap Examples
      • String
      • Map
        • Examples
      • Queue
        • Queue Continued...
        • Queue Sandbox
        • Dequeue
      • Tree
        • In Order Traversal
        • Tree Equal ?
        • Ternary-search-trees
        • Red_Black Tree
        • Tree Mirror:
        • Tree Traversal
      • Recursion
        • Recursion Explained
          • Recursion Examples
      • Linked List
        • Linked List Background
        • Double Linked List
        • List Example
        • Examples (LL) continued
        • List Operations
      • Set
        • Set
        • Set Intersection Union
        • Disjoint Set
      • Sorting
        • In JavaScript
        • Merge Sort
        • Iterative Sorting
        • Recursive Sorting
        • Graph Topological Sort
        • SelectionSort
        • Quick Sort
        • Merge Sort
        • Insertion Sort
      • Stack
        • Stack Continued
        • Stack Part 3
      • Searching
        • Binary Search
        • Searching & Sorting Computational Complexity (JS)
  • practice
    • GCA Sprint Prep:
      • Practice Problems
      • Code Signal CGA Sprint Resources
      • CGA-Sprint Prep
    • Supplemental Practice:
      • Practice
      • JavaScript Algorithms
      • Industry Standard Algorithms
        • Interview Practice Resources
        • Write a Program to Find the Maximum Depth or Height of a Tree
      • Random Examples
      • Prompts
      • JS_BASICS
  • Resources
    • Python Cheat Sheet
      • Cheatsheet-v2
      • List Of Python Cheat Sheets
    • Youtube
    • PDF Downloads
    • Intro 2 Python
    • Dictionaries
      • Dictionaries Continued
    • Python VS JavaScript
    • Misc. Resources
    • Things To Internalize:
      • Functions
    • Intro To Python w Jupyter Notebooks
    • Calculating Big O
    • Useful Links
      • Awesome Python
      • My-Links
      • Beginners Guide To Python
  • Docs
    • Docs
      • Strings
        • Strings Continued
      • Touple
      • Values Expressions & Statments
      • Dictionaries, sets, files, and modules
        • Modules
      • Built-in Types
      • Built In Functions
        • Zip Function
      • Functions
      • Classes and objects
        • Inheritance
        • Classes
          • Python Objects & Classes
          • index
      • Dictionaries
      • Conditionals and loops
      • Lists
        • Reverse A List
        • Python Data Structures
        • More On Lists
        • Examples
          • More-Examples
        • List Compehensions
      • Basic Syntax
      • String-Methods
    • Queue & Stacks
  • quick-reference
    • My Medium Articles
    • Free Python Books
    • WHY Python?
    • Debugging
    • Python Snippets
    • Python3 Regex
    • Python Module Index:
      • Requests Module
    • Creating Python Modules
    • Useful Info
    • Python Glossary
    • Python Snippets
  • MISC
    • Built-in Methods & Functions
    • Data Structures Types
    • Math
    • Unsorted Examples
    • Outline
    • About Python
      • Python VS JavaScript
      • Python Modules & Python Packages
      • Misc
      • Python's Default Argument Values and Lists
      • SCRAP
  • Interview Prep
    • Interview Resources
      • By Example
        • Algo-Prep
      • Permutation
      • How to Write an Effective Resume of Python Developer
      • Interview Checklist
      • 150 Practice Problems & Solutions
  • Installations Setup & Env
    • python-setup
    • Installing Python Modules
    • Set Up Virtual Enviornment
  • Aux-Exploration
    • Related Studies
      • Self-Organizing Maps: Theory and Implementation in Python with NumPy
      • List Directory Contents
      • Employee Manager
      • OS Module
      • server-side-scripting
      • Web Scraping
      • Reading and Writing to text files in Python
      • General Data Structures
      • Touple
      • How to round Python values to whole numbers?
      • Python Array Module
      • Data Structures In JavaScript
      • Dunder Methods
      • Python GitHub API
      • JS-Event Loop
      • JavaScript Event Loop
      • Manipulating Files & Folders
  • experiments
    • Untitled
Powered by GitBook
On this page
  1. Aux-Exploration
  2. Related Studies

JS-Event Loop

PreviousPython GitHub APINextJavaScript Event Loop

Last updated 3 years ago

JavaScript is single-threaded: only one task can run at a time. Usually that’s no big deal, but now imagine you’re running a task which takes 30 seconds.. Ya.. During that task we’re waiting for 30 seconds before anything else can happen (JavaScript runs on the browser’s main thread by default, so the entire UI is stuck) 😬 It’s 2019, no one wants a slow, unresponsive website.

Luckily, the browser gives us some features that the JavaScript engine itself doesn’t provide: a Web API. This includes the DOM API, setTimeout, HTTP requests, and so on. This can help us create some async, non-blocking behavior 🚀

When we invoke a function, it gets added to something called the call stack. The call stack is part of the JS engine, this isn’t browser specific. It’s a stack, meaning that it’s first in, last out (think of a pile of pancakes). When a function returns a value, it gets popped off the stack 👋

The respond function returns a setTimeout function. The setTimeout is provided to us by the Web API: it lets us delay tasks without blocking the main thread. The callback function that we passed to the setTimeout function, the arrow function () => { return 'Hey' } gets added to the Web API. In the meantime, the setTimeout function and the respond function get popped off the stack, they both returned their values!

In the Web API, a timer runs for as long as the second argument we passed to it, 1000ms. The callback doesn’t immediately get added to the call stack, instead it’s passed to something called the queue.

This can be a confusing part: it doesn't mean that the callback function gets added to the callstack(thus returns a value) after 1000ms! It simply gets added to the queue after 1000ms. But it’s a queue, the function has got to wait for its turn!

Now this is the part we’ve all been waiting for… Time for the event loop to do its only task: connecting the queue with the call stack! If the call stack is empty, so if all previously invoked functions have returned their values and have been popped off the stack, the first item in the queue gets added to the call stack. In this case, no other functions were invoked, meaning that the call stack was empty by the time the callback function was the first item in the queue.

The callback is added to the call stack, gets invoked, and returns a value, and gets popped off the stack.

Reading an article is fun, but you'll only get entirely comfortable with this by actually working with it over and over. Try to figure out what gets logged to the console if we run the following:

const foo = () => console.log("First");
const bar = () => setTimeout(() => console.log("Second"), 500);
const baz = () => console.log("Third");

bar();
foo();
baz();

Got it? Let's quickly take a look at what's happening when we're running this code in a browser:

  1. We invoke bar. bar returns a setTimeout function.

  2. The callback we passed to setTimeout gets added to the Web API, the setTimeout function and bar get popped off the callstack.

  3. The timer runs, in the meantime foo gets invoked and logs First. foo returns (undefined),baz gets invoked, and the callback gets added to the queue.

  4. baz logs Third. The event loop sees the callstack is empty after baz returned, after which the callback gets added to the call stack.

  5. The callback logs Second.