Unlike linear data structures (Array, Linked List, Queues, Stacks, etc) which have only one logical way to traverse them, trees can be traversed in different ways. Following are the generally used ways for traversing trees.
Depth First Traversals:
(a) Inorder (Left, Root, Right) : 4 2 5 1 3
(b) Preorder (Root, Left, Right) : 1 2 4 5 3
(c) Postorder (Left, Right, Root) : 4 5 2 3 1
Breadth First or Level Order Traversal : 1 2 3 4 5
Please see this post for Breadth First Traversal.
Inorder Traversal (Practice):
Algorithm Inorder(tree)1. Traverse the left subtree, i.e., call Inorder(left-subtree)2. Visit the root.3. Traverse the right subtree, i.e., call Inorder(right-subtree)
Uses of Inorder
In case of binary search trees (BST), Inorder traversal gives nodes in non-decreasing order. To get nodes of BST in non-increasing order, a variation of Inorder traversal where Inorder traversal s reversed can be used.
Example: Inorder traversal for the above-given figure is 4 2 5 1 3.
Preorder Traversal (Practice):
Algorithm Preorder(tree)1. Visit the root.2. Traverse the left subtree, i.e., call Preorder(left-subtree)3. Traverse the right subtree, i.e., call Preorder(right-subtree)
Uses of Preorder
Preorder traversal is used to create a copy of the tree. Preorder traversal is also used to get prefix expression on of an expression tree. Please see http://en.wikipedia.org/wiki/Polish_notation to know why prefix expressions are useful.
Example: Preorder traversal for the above given figure is 1 2 4 5 3.
Algorithm Postorder(tree)1. Traverse the left subtree, i.e., call Postorder(left-subtree)2. Traverse the right subtree, i.e., call Postorder(right-subtree)3. Visit the root.
Uses of Postorder
Postorder traversal is used to delete the tree. Please see the question for deletion of tree for details. Postorder traversal is also useful to get the postfix expression of an expression tree. Please see http://en.wikipedia.org/wiki/Reverse_Polish_notation to for the usage of postfix expression.
Example: Postorder traversal for the above given figure is 4 5 2 3 1.
# Python program to for tree traversals# A class that represents an individual node in a# Binary TreeclassNode:def__init__(self,key): self.left =None self.right =None self.val = key# A function to do inorder tree traversaldefprintInorder(root):if root:# First recur on left childprintInorder(root.left)# then print the data of nodeprint(root.val),# now recur on right childprintInorder(root.right)# A function to do postorder tree traversaldefprintPostorder(root):if root:# First recur on left childprintPostorder(root.left)# the recur on right childprintPostorder(root.right)# now print the data of nodeprint(root.val),# A function to do preorder tree traversaldefprintPreorder(root):if root:# First print the data of nodeprint(root.val),# Then recur on left childprintPreorder(root.left)# Finally recur on right childprintPreorder(root.right)# Driver coderoot =Node(1)root.left =Node(2)root.right =Node(3)root.left.left =Node(4)root.left.right =Node(5)print"Preorder traversal of binary tree is"printPreorder(root)print"\nInorder traversal of binary tree is"printInorder(root)print"\nPostorder traversal of binary tree is"printPostorder(root)
// javascript program for different tree traversals/* Class containing left and right child of currentnode and key value*/classNode {constructor(val) {this.key = val;this.left =null;this.right =null; }}// Root of Binary Treevar root =null;/* * Given a binary tree, print its nodes according to the "bottom-up" postorder * traversal. */functionprintPostorder(node) {if (node ==null)return;// first recur on left subtreeprintPostorder(node.left);// then recur on right subtreeprintPostorder(node.right);// now deal with the nodedocument.write(node.key +" "); }/* Given a binary tree, print its nodes in inorder */functionprintInorder(node) {if (node ==null)return;/* first recur on left child */printInorder(node.left);/* then print the data of node */document.write(node.key +" ");/* now recur on right child */printInorder(node.right); }/* Given a binary tree, print its nodes in preorder */functionprintPreorder(node) {if (node ==null)return;/* first print data of node */document.write(node.key +" ");/* then recur on left sutree */printPreorder(node.left);/* now recur on right subtree */printPreorder(node.right); }// Driver method root =newNode(1);root.left =newNode(2);root.right =newNode(3);root.left.left =newNode(4);root.left.right =newNode(5);document.write("Preorder traversal of binary tree is <br/>");printPreorder(root);document.write("<br/>Inorder traversal of binary tree is <br/>");printInorder(root);document.write("<br/>Postorder traversal of binary tree is <br/>");printPostorder(root);// This code is contributed by aashish1995