bn.js
Last updated
Last updated
BigNum in pure javascript
npm install --save bn.js
Note: decimals are not supported in this library.
There are several prefixes to instructions that affect the way the work. Here is the list of them in the order of appearance in the function name:
i
- perform operation in-place, storing the result in the host object (on which the method was invoked). Might be used to avoid number allocation costs
u
- unsigned, ignore the sign of operands when performing operation, or always return positive value. Second case applies to reduction operations like mod()
. In such cases if the result will be negative - modulo will be added to the result to make it positive
n
- the argument of the function must be a plain JavaScript Number. Decimals are not supported.
rn
- both argument and return value of the function are plain JavaScript Numbers. Decimals are not supported.
a.iadd(b)
- perform addition on a
and b
, storing the result in a
a.umod(b)
- reduce a
modulo b
, returning positive value
a.iushln(13)
- shift bits of a
left by 13
Prefixes/postfixes are put in parens at the of the line. endian
- could be either le
(little-endian) or be
(big-endian).
a.clone()
- clone number
a.toString(base, length)
- convert to base-string and pad with zeroes
a.toNumber()
- convert to Javascript Number (limited to 53 bits)
a.toJSON()
- convert to JSON compatible hex string (alias of toString(16)
)
a.toArray(endian, length)
- convert to byte Array
, and optionally zero pad to length, throwing if already exceeding
a.toArrayLike(type, endian, length)
- convert to an instance of type
, which must behave like an Array
a.toBuffer(endian, length)
- convert to Node.js Buffer (if available). For compatibility with browserify and similar tools, use this instead: a.toArrayLike(Buffer, endian, length)
a.bitLength()
- get number of bits occupied
a.zeroBits()
- return number of less-significant consequent zero bits (example: 1010000
has 4 zero bits)
a.byteLength()
- return number of bytes occupied
a.isNeg()
- true if the number is negative
a.isEven()
- no comments
a.isOdd()
- no comments
a.isZero()
- no comments
a.cmp(b)
- compare numbers and return -1
(a <
b), 0
(a ==
b), or 1
(a >
b) depending on the comparison result (ucmp
, cmpn
)
a.lt(b)
- a
less than b
(n
)
a.lte(b)
- a
less than or equals b
(n
)
a.gt(b)
- a
greater than b
(n
)
a.gte(b)
- a
greater than or equals b
(n
)
a.eq(b)
- a
equals b
(n
)
a.toTwos(width)
- convert to two's complement representation, where width
is bit width
a.fromTwos(width)
- convert from two's complement representation, where width
is the bit width
BN.isBN(object)
- returns true if the supplied object
is a BN.js instance
BN.max(a, b)
- return a
if a
bigger than b
BN.min(a, b)
- return a
if a
less than b
a.neg()
- negate sign (i
)
a.abs()
- absolute value (i
)
a.add(b)
- addition (i
, n
, in
)
a.sub(b)
- subtraction (i
, n
, in
)
a.mul(b)
- multiply (i
, n
, in
)
a.sqr()
- square (i
)
a.pow(b)
- raise a
to the power of b
a.div(b)
- divide (divn
, idivn
)
a.mod(b)
- reduct (u
, n
) (but no umodn
)
a.divmod(b)
- quotient and modulus obtained by dividing
a.divRound(b)
- rounded division
a.or(b)
- or (i
, u
, iu
)
a.and(b)
- and (i
, u
, iu
, andln
) (NOTE: andln
is going to be replaced with andn
in future)
a.xor(b)
- xor (i
, u
, iu
)
a.setn(b, value)
- set specified bit to value
a.shln(b)
- shift left (i
, u
, iu
)
a.shrn(b)
- shift right (i
, u
, iu
)
a.testn(b)
- test if specified bit is set
a.maskn(b)
- clear bits with indexes higher or equal to b
(i
)
a.bincn(b)
- add 1 << b
to the number
a.notn(w)
- not (for the width specified by w
) (i
)
a.gcd(b)
- GCD
a.egcd(b)
- Extended GCD results ({ a: ..., b: ..., gcd: ... }
)
a.invm(b)
- inverse a
modulo b
When doing lots of reductions using the same modulo, it might be beneficial to use some tricks: like Montgomery multiplication, or using special algorithm for Mersenne Prime.
To enable this tricks one should create a reduction context:
where num
is just a BN instance.
Or:
Where primeName
is either of these Mersenne Primes:
'k256'
'p224'
'p192'
'p25519'
Or:
To reduce numbers with Montgomery trick. .mont()
is generally faster than .red(num)
, but slower than BN.red(primeName)
.
Before performing anything in reduction context - numbers should be converted to it. Usually, this means that one should:
Convert inputs to reducted ones
Operate on them in reduction context
Convert outputs back from the reduction context
Here is how one may convert numbers to red
:
Where red
is a reduction context created using instructions above
Here is how to convert them back:
Most of the instructions from the very start of this readme have their counterparts in red context:
a.redAdd(b)
, a.redIAdd(b)
a.redSub(b)
, a.redISub(b)
a.redShl(num)
a.redMul(b)
, a.redIMul(b)
a.redSqr()
, a.redISqr()
a.redSqrt()
- square root modulo reduction context's prime
a.redInvm()
- modular inverse of the number
a.redNeg()
a.redPow(b)
- modular exponentiation
Optimized for elliptic curves that work with 256-bit numbers. There is no limitation on the size of the numbers.
This software is licensed under the MIT License.